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1
RANKING REPRESENTATIVE SEGMENTS IN
MEDIA DATA

CROSS-REFERENCE TO RELATED UNITED
STATES APPLICATIONS

This application claims priority to U.S. Patent Provisional
Application Nos. 61/428,578, filed 30 Dec. 2010, 61/428,
588, filed 30 Dec. 2010, 61/428,554, filed 30 Dec. 2010, and
61/569,591, filed 12 Dec. 2011, hereby incorporated by ref-
erence in each entireties.

TECHNOLOGY

The present invention relates generally to media, and in
particular, to ranking representative segments in media data.

BACKGROUND

Media data may comprise representative segments that are
capable of making lasting impressions on listeners or view-
ers. For example, most popular songs follow a specific struc-
ture that alternates between a verse section and a chorus
section. Usually, the chorus section is the most repeating
section in a song and also the “catchy” part of a song. The
position of chorus sections typically relates to the underlying
song structure, and may be used to facilitate an end-user to
browse a song collection.

Thus, on the encoding side, the position of a representative
segment such as a chorus section may be identified in media
data such as a song, and may be associated with the encoded
bitstream of the song as metadata. On the decoding side, the
metadata enables the end-user to start the playback at the
position of the chorus section. When a collection of media
data such as a song collection at a store is being browsed,
chorus playback facilitates instant recognition and identifica-
tion of known songs and fast assessment of liking or disliking
for unknown songs in a song collection.

In a “clustering approach” (or a state approach), a song
may be segmented into different sections using clustering
techniques. The underlying assumption is that the different
sections (such as verse, chorus, etc.) of a song share certain
properties that discriminate one section from the other sec-
tions or other parts of the song.

In a “pattern matching approach” (or a sequence
approach), it is assumed that a chorus is a repetitive section in
a song. Repetitive sections may be identified by matching
different sections of the song with one another.

Both “the clustering approach” and “the pattern matching
approach” require computing a distance matrix from an input
audio clip. In order to do so, the input audio clip is divided into
N frames; features are extracted from each of the frames.
Then, a distance is computed between every pair of frames
among the total number of pairs formed between any two of
the N frames of the input audio clip. The derivation of this
matrix is computationally expensive and requires high
memory usage, because a distance needs to be computed for
each and every one of all the combinations (which means an
order of magnitude of NxN times, where N is the number of
frames in a song or an input audio clip therein).

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section. Similarly,
issues identified with respect to one or more approaches

10

15

20

25

30

35

40

45

50

55

60

65

2

should not assume to have been recognized in any prior art on
the basis of this section, unless otherwise indicated.

BRIEF DESCRIPTION OF DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which like reference numerals refer to similar
elements and in which:

FIG. 1 depicts an example basic block diagram of a media
processing system, according to possible embodiments of the
present invention;

FIG. 2 depicts example media data such as a song having an
offset between chorus sections, according to possible
embodiments of the present invention;

FIG. 3 illustrates an example distance matrix, in accor-
dance with possible embodiments of the present invention;

FIG. 4 illustrates example generation of a coarse spectro-
gram, according to possible embodiments of the present
invention;

FIG. 5 illustrates an example helix of pitches, according to
possible embodiments of the present invention;

FIG. 6 illustrates an example frequency spectrum, accord-
ing to possible embodiments of the present invention;

FIG. 7 illustrates an example comb pattern to extract an
example chroma, according to possible embodiments of the
present invention;

FIG. 8 illustrates an example operation to multiply a
frame’s spectrum with a comb pattern, according to possible
embodiments of the present invention;

FIG. 9 illustrates a first example weighting matrix relating
to a chromagram computed on a restricted frequency range,
according to possible embodiments of the present invention;

FIG. 10 illustrates a second example weighting matrix
relating to a chromagram computed on a restricted frequency
range, according to possible embodiments of the present
invention;

FIG. 11 illustrates a third example weighting matrix relat-
ing to a chromagram computed on a restricted frequency
range, according to possible embodiments of the present
invention;

FIG. 12 illustrates an example chromagram plot associated
with example media data in the form of a piano signal (with
musical notes of gradually increasing octaves) using a per-
ceptually motivated BPF, according to possible embodiments
of the present invention;

FIG. 13 illustrates an example chromagram plot associated
with the piano signal as shown in FIG. 12 but using the
Gaussian weighting, according to possible embodiments of
the present invention;

FIG. 14 illustrates an example detailed block diagram of'a
media processing system, according to possible embodi-
ments of the present invention;

FIG. 15 illustrates example chroma distance values for a
row of a similarity matrix, smoothed distance values and
resulting seed time point for scene change detection, accord-
ing to possible embodiments of the present invention;

FIG. 16 illustrates an example process flow according to
possible embodiments of the present invention;

FIG. 17 illustrates an example hardware platform on which
acomputer or a computing device as described herein may be
implemented, according a possible embodiment of the
present invention; and

FIG. 18 illustrates example computation of an F-measure,
according a possible embodiment of the present invention.
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DESCRIPTION OF EXAMPLE POSSIBLE
EMBODIMENTS

Example possible embodiments, which relate to ranking
representative segments in media data, are described herein.
In the following description, for the purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the present invention. It will be
apparent, however, that the present invention may be prac-
ticed without these specific details. In other instances, well
known structures and devices are not described in exhaustive
detail, in order to avoid unnecessarily including, obscuring,
or obfuscating the present invention.

Example embodiments are described herein according to
the following outline:

1. GENERAL OVERVIEW
2. FRAMEWORK FOR FEATURE EXTRACTION
3. SPECTRUM BASED FINGERPRINTS
4. CHROMA FEATURES
5. OTHER FEATURES
5.1 MEL-FREQUENCY CEPSTRAL COEFFI-

CIENTS (MFCC)
5.2 RHYTHM FEATURES
6. DETECTION OF REPETITIVE PARTS
7. REFINEMENT USING SCENE CHANGE DETEC-
TION

8. RANKING

8.1. RANKING USING WEIGHTED SCORES

8.2. RANKING USING STATISTICAL MODELS

9. OTHER APPLICATIONS

10. EXAMPLE PROCESS FLOW

11. IMPLEMENTATION MECHANISMS—HARD-

WARE OVERVIEW
12. EQUIVALENTS, EXTENSIONS, ALTERNATIVES
AND MISCELLANEOUS
1. General Overview

This overview presents a basic description of some aspects
of a possible embodiment of the present invention. It should
be noted that this overview is not an extensive or exhaustive
summary of aspects of the possible embodiment. Moreover, it
should be noted that this overview is not intended to be
understood as identitying any particularly significant aspects
or elements of the possible embodiment, nor as delineating
any scope of the possible embodiment in particular, nor the
invention in general. This overview merely presents some
concepts that relate to the example possible embodiment in a
condensed and simplified format, and should be understood
as merely a conceptual prelude to a more detailed description
of example possible embodiments that follows below.

As described herein, media data may comprise, but are not
limited to, one or more of: songs, music compositions, scores,
recordings, poems, audiovisual works, movies, or multime-
dia presentations. In various embodiment, the media data may
be derived from one or more of: audio files, media database
records, network streaming applications, media applets,
media applications, media data bitstreams, media data con-
tainers, over-the-air broadcast media signals, storage media,
cable signals, or satellite signals.

Media features of many different types may be extractable
from the media data, capturing structural properties, tonality
including harmony and melody, timbre, rhythm, loudness,
stereo mix, or a quantity of sound sources of the media data.
Features extractable from media data as described herein may
relate to any of a multitude of media standards, a tuning
system of 12 equal temperaments or a different tuning system
other than a tuning system of 12 equal temperaments.
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4

One or more of these types of media features may be used
to generate a digital representation for the media data. For
example, media features of a type that captures tonality, tim-
bre, or both tonality and timbre of the media data may be
extracted, and used to generate a full digital representation,
for example, in time domain or frequency domain, for the
media data. The full digital representation may comprise a
total of N frames. Examples of a digital representation may
include, but are not limited to, those of fast Fourier transforms
(FFTs), digital Fourier transtorms (DFTs), short time Fourier
transforms (STFTs), Modified Discrete Cosine Transforms
(MDCTs), Modified Discrete Sine Transforms (MDSTs),
Quadrature Mirror Filters (QMFs), Complex QMFs
(CQMFs), discrete wavelet transforms (DWTs), or wavelet
coefficients.

In some embodiments, when multiple candidate represen-
tative segments are identified, a representative segment may
be selected among the candidate representative segments
through ranking. A ranking score may be determined based
on one or more types of features extractable from the media
data and assigned to each individual candidate representative
segment. The ranking score may comprise one or more com-
ponent ranking scores. A component ranking score may relate
to at least one of structural properties, tonality including
harmony and melody, timbre, rhythm, loudness, stereo mix, a
quantity that represents the number of sound sources of the
media data, time position, overlapping by a candidate seg-
ment with other candidate segments, repetitions and dynam-
ics related to candidate segments, etc. For example, a first
component ranking score in the (composite) ranking score of
a candidate representative segment may be assigned based on
a first type of media features, while a second component
ranking score in the same composite ranking score may be
assigned based on a second type of media features. In an
example, a component ranking score may be based on one of
duration, a measure for overlapping between different candi-
date representative segments, time-wise positions of candi-
date representative segments in the media data, chroma dis-
tance, MFCC, spectral contrast, spectral centroid, spectral
bandwidth, spectral roll-off, spectral flatness, presence of
singing voice, absence of singing voice, one or more rhythm
patterns, energy, one or more stereo parameters, or perceptual
entropy.

In some possible embodiments, each component ranking
score may be assigned one in a plurality of weight factors
assigned to the plurality of component ranking scores. The
weight factors for the component ranking scores may be
preset or dynamically configurable. In some possible
embodiments, the plurality of weight factors assigned to com-
ponent ranking score may be set using one or more rules. In
some possible embodiments, the plurality of weight factors
assigned to component ranking score may be set using a
probabilistic learning framework or a probabilistic or statis-
tical model.

In some possible embodiments, the plurality of weight
factors assigned to component ranking score may be set as the
output of a statistical model based on the features, such as
Gaussian mixture models, Hidden Markov models. In some
possible embodiments, the plurality of weight factors
assigned to component ranking score may be set using a boost
algorithm. Under an example “Adaboost” approach, media
features extracted from a training set of media segments may
form a set of features vectors. A strong classifier may be
created based on the set of feature vectors obtained from the
training set using an “Adaboost” algorithm. The strong clas-
sifier may thereafter be applied to each individual candidate
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representative segment of the media data, for the purpose of
ranking the plurality of candidate representative segments.

In some possible embodiments, the representative segment
may correspond to a candidate representative segment with a
ranking score that is large in relation to other ranking scores
assigned to other candidate representative segments in the
plurality of candidate representative segments.

Benefits of the present invention include, but are not lim-
ited to, identifying a chorus section, or a brief section that may
be suitable for replaying or previewing when a large section
of'songs is being browsed, a ring tone, etc. To play any of one
or more representative segments in media data such as a song,
the locations of one or more representative segments in the
media, for example, may be encoded by a media generator in
a media, data bitstream in the encoding stage. The media data
bitstream may then be decoded by a media data player to
recover the locations of the representative segments and to
play any of the representative segments.

In some possible embodiments, mechanisms as described
herein form a part of a media processing system, including but
not limited to: a handheld device, game machine, television,
laptop computer, netbook computer, cellular radiotelephone,
electronic book reader, point of sale terminal, desktop com-
puter, computer workstation, computer kiosk, or various
other kinds of terminals and media processing units.

Various modifications to the preferred embodiments and
the generic principles and features described herein will be
readily apparent to those skilled in the art. Thus, the disclo-
sure is not intended to be limited to the embodiments shown,
but is to be accorded the widest scope consistent with the
principles and features described herein.

2. Framework for Feature Extraction

In some possible embodiments, a media processing system
herein may contain four major components as shown in FIG.
1. A feature-extraction component may extract features of
various types from media data such as a song. A repetition
detection component may find time-wise sections of the
media data that are repetitive, for example, based on certain
characteristics of the media data such as the melody, harmo-
nies, lyrics, timbre ofthe song in these sections as represented
in the extracted features of the media data.

In some possible embodiments, the repetitive segments
may be subjected to a refinement procedure performed by a
scene change detection component, which finds the correct
start and end time points that delineate segments encompass-
ing selected repetitive sections. These correct start and end
time points may comprise beginning and ending scene
change points of one or more scenes possessing distinct char-
acteristics in the media data. A pair of a beginning scene
change point and an ending scene change point may delineate
a candidate representative segment.

A ranking algorithm performed by a ranking component
may be applied for the purpose of selecting a representative
segment from all the candidate representative segments. In a
particular embodiment, the representative segment selected
may be the chorus of the song.

In some possible embodiments, a media processing system
as described herein may be configured to perform a combi-
nation of fingerprint matching and chroma distance analyses.
Under the techniques as described herein, the system may
operate with high performance at a relatively low complexity
to process a large amount of media data. The fingerprint
matching enables fast and low-complexity searches for the
best matching segments that are repetitive in the media data.
In these embodiments, a set of offset values at which repeti-
tions occur is identified. Then, a more accurate chroma dis-
tance analysis is applied only at those offsets. Relative to a
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6

same time interval of the media data, the chroma distance
analysis may be more reliable and accurate than the finger-
print matching analysis but at the expense of higher complex-
ity than that of the fingerprint matching analysis. The advan-
tage of the combined/hybrid approach is that since the chroma
distance analysis is only applied to certain offsets in the media
data, the computational complexity and memory usage
decreases drastically as compared with applying the chroma
distance analysis on the whole time duration of the media
data.

As mentioned, some repetition detection systems compute
a full distance matrix, which contains the distance between
each and every one of all combinations formed by any two of
all N frames of media data. The computation of the full
distance matrix may be computationally expensive and
require high memory usage. FIG. 2 depicts example media
data such as a song having an offset as shown between the first
and second chorus sections. FIG. 3 shows an example dis-
tance matrix with two dimensions, time and offset, for dis-
tance computation. The offset denotes the time-lag between
two frames from which a dissimilarity value (or a distance)
relating to a features (or similarity) is computed. Repetitive
sections are represented as horizontal dark lines, correspond-
ing to a low distance of a section of successive frames to
another section of successive frames that are a certain offset
apart.

Under techniques as described herein, the computation of a
full distance matrix may be avoided. Instead, fingerprint
matching data may be analyzed to provide the approximate
locations of repetitions and respective offsets between
(neighboring repetitions) approximate locations. Thus, dis-
tance computations between features that are separated by an
offset value that is not equal to one of the significant offsets
can be avoided. In some possible embodiment, the feature
comparison at the significant offset values may further be
performed on a restricted time range comprising time posi-
tions of time points (tm and tq) from fingerprint analysis. As
a result, even if a distance matrix is used under techniques as
described herein, such a distance matrix may comprise only a
few rows and columns for which distances are to be com-
puted, relative to the full distance matrix under other tech-
niques.

3. Spectrum Based Fingerprints

The goal of fingerprint extraction is to create a compact
bitstream representation that can serve as an identifier for an
underlying section of the media data. In general, for the
purpose of detecting malicious tempering of media data, fin-
gerprints may be designed in such a way as to possess robust-
ness against a variety of signal processing/manipulation
operations including coding, Dynamic Range Compression
(DRC), equalization, etc. However, for the purpose of finding
repeating sections in media data as described herein, the
robustness requirements of fingerprints may be relaxed, since
the matching of the fingerprints occurs within the same song.
Malicious attacks that must be dealt with by a typical finger-
printing system may be absent or relatively rare in the media
data as described herein.

Furthermore, fingerprint extraction herein may be based on
a coarse spectrogram representation. For example, in
embodiments in which the media data is an audio signal, the
audio signal may be down-mixed to a mono signal and may
additionally and/or optionally be down sampled to 16 kHz. In
some embodiments, the media data such as the audio signal
may be processed into, but is not limited to, a mono signal,
and may further be divided into overlapping chunks. A spec-
trogram may be created from each of the overlapping chunks.
A coarse spectrogram may be created by averaging along
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both time and frequency. The foregoing operation may pro-
vide robustness against relatively small changes in the spec-
trogram along time and frequency. It should be noted that, in
some possible embodiments, the coarse spectrogram herein
may also be chosen in a way to emphasize certain parts of a
spectrum more than other parts of the spectrum.

FIG. 4 illustrates example generation of a coarse spectro-
gram according to possible embodiments of the present
invention. The (input) media data (e.g., a song) is first divided
into chunks of duration T_,=2 seconds with a step size of
T,=16 ms. For each chunk of audio data (X_,), a spectrogram
may be computed with a certain time resolution (e.g., 128
samples or 8 ms) and frequency resolution (256-sample FFT).
The computed spectrogram S may be tiled with time-fre-
quency blocks. The magnitude of the spectrum within each of
the time-frequency blocks may be averaged to obtain a coarse
representation Q of the spectrogram S. The coarse represen-
tation Q of S may be obtained by averaging the magnitude of
frequency coefficients in time-frequency blocks of size
W xW.,. Here, W is the size of block along frequency and W,
is the size of block along time. Let F be the number of blocks
along frequency axis and T be the number of blocks along
time axis and hence Q is of size (F*T). Q may be computed in
expression (1) given below:

KWy W,
S, J)
i=(eDw; =D,

k=1,2...F;1=1,2...T

Here, 1 and j represent the indices of frequency and time in
the spectrogram and k and 1 represent the indices of the
time-frequency blocks in which the averaging operation is
performed. In some possible embodiments, F may be a posi-
tive integer (e.g., 5, 10, 15, 20, etc.), while T may be a positive
integer (e.g., 5, 10, 15, 20, etc.).

In some possible embodiments, a low-dimensional repre-
sentation of the coarse representation (Q) of spectrogram of
the chunk may be created by projecting the spectrogram onto
pseudo-random vectors. The pseudo-random vectors may be
thought of as basis vectors. A number K of pseudo-random
vectors may be generated, each of which may be with the
same dimensions as the matrix Q (FxT). The matrix entries
may be uniformly distributed random variables in [0, 1].
The state of the random number generator may be set
based on a key. Let the pseudo-random vectors be denoted as
P, P,, ..., Pg, each of dimension (FxT). The mean of each
matrix P, may be computed. Each matrix element in P, (i goes
from 1 to K) may be subtracted with the mean of matrix P,.
Then, the matrix Q may be projected onto these K random
vectors as shown below:

N
D06, P )

J=1

1=

Hy =

i

Here H,, is the projection of the matrix Q onto the random
vector P,. Using the median of these projections (H,, k=1,
2,...K)asathreshold, anumber K ofhash bits for the matrix
Q may be generated. For example, a hash bit ‘1’ may be
generated for k™ hash bit if the projection H, is greater than
the threshold. Otherwise, a hash bit of ‘0’ if not. In some
possible embodiments, K may be a positive integer such as 8,
16, 24,32, etc. In an example, a fingerprint of 24 hash bits as
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described herein may be created for every 16 ms of audio
data. A sequence of fingerprints comprising these 24-bit
codewords may be used as an identifier for that particular
chunk of audio that the sequence of fingerprints represents. In
a possible embodiment, the complexity of fingerprint extrac-
tion as described herein may be about 2.58 MIPS.

A coarse representation Q herein has been described as a
matrix derived from FFT coefficients. It should be noted that
this is for illustration purposes only. Other ways of obtaining
a representation in various granularities may be used. For
example, different representations derived from fast Fourier
transforms (FFTs), digital Fourier transforms (DFTs), short
time Fourier transforms (STFTs), Modified Discrete Cosine
Transforms (MDCTs), Modified Discrete Sine Transforms
(MDSTs), Quadrature Mirror Filters (QMFs), Complex
QMFs (CQMFs), discrete wavelet transforms (DWTs), or
wavelet coefficients, chroma features, or other approaches
may be used to derive codewords, hash bits, fingerprints, and
sequences of fingerprints for chunks of the media data.

4. Chroma Features

A chromagram may be defined as an n-dimensional
chroma vector. For example, for media data in a tuning system
of 12 equal temperaments, a chromagram may be defined as
a 12-dimensional chroma vector in which each dimension
corresponds to the intensity (or alternatively magnitude) of a
semitone class (chroma). Different dimensionalities of
chroma vectors may be defined for other tuning systems. The
chromagram may be obtained by mapping and folding an
audio spectrum into a single octave. The chroma vector rep-
resents a magnitude distribution over chromas that may be
discretized into 12 pitch classes within an octave. Chroma
vectors capture melodic and harmonic content of an audio
signal and may be less sensitive to changes in timbre than the
spectrograms as discussed above in connection with finger-
prints that were used for determining repetitive or similar
sections.

Chroma features may be visualized by projecting or fold-
ing on a helix of pitches as illustrated in FIG. 5. The term
“chroma” refers to the position of a musical pitch within a
particular octave; the particular octave may correspond to a
cycle of the helix of pitches, as viewed from sideways in FIG.
5. Essentially, a chroma refers to a position on the circumfer-
ence of the helix as seen from directly above in FIG. 5,
without regard to heights of octaves on the helix of FIG. 5.
The term “height”, on the other hand, refers to a vertical
position on the circumference of the helix as seen from the
side in FIG. 5. The vertical position as indicated by a specific
height corresponds to a position in a specific octave of the
specific height.

The presence of a musical note may be associated with the
presence of a comb-like pattern in the frequency domain. This
pattern may be composed of lobes approximately at the posi-
tions corresponding to the multiples of the fundamental fre-
quency of an analyzed tone. These lobes are precisely the
information which may be contained in the chroma vectors.

In some possible embodiments, the content of the magni-
tude spectrum at a specific chroma may be filtered out using
a band-pass filter (BPF). The magnitude spectrum may be
multiplied with a BPF (e.g., with a Hann window function).
The center frequencies ofthe BPF as well as the width may be
determined by the specific chroma and a number of height
values. The window of the BPF may be centered at a Shep-
ard’s frequency as a function of both chroma and height. An
independent variable in the magnitude spectrum may be fre-
quency in Hz, which may be converted to cents (e.g., 100
cents equals to a half-tone). The fact that the width of the BPF
is chroma specific stems from the fact that musical notes (or
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chromas as projected onto a particular octave of the helix of
FIG. 5) are not linearly spaced in frequency, but logarithmi-
cally. Higher pitched notes (or chromas) are further apart
from each other in the spectrum than lower pitched notes, so
the frequency intervals between notes at higher octaves are
wider than those at lower octaves. While the human ear is able
to perceive very small differences in pitch at low frequencies,
the human ear is only able to perceive relatively significant
changes in pitch at high frequencies. For these reasons related
to human perception, the BPF may be selected to be of a
relatively wide window and of a relatively large magnitude at
relatively high frequencies. Thus, in some possible embodi-
ments, these BPF filters may be perceptually motivated.

A chromagram may be computed by a short-time-fourier-
transformation (STFT) with a 4096-sample Hann window. In
some possible embodiments, a fast-fourier-transform (PPT)
may be used to perform the calculations; a FFT frame may be
shifted by 1024 samples, while a discrete time step (e.g., 1
frame shift) may be 46.4 (or simply denoted as 46 herein)
milliseconds (ms).

First, the frequency spectrum (as illustrated in FIG. 6) of a
46 ms frame may be computed. Second, the presence of a
musical note may be associated with a comb pattern in the
frequency spectrum, composed of lobes located at the posi-
tions of the various octaves of the given note. The comb
pattern may be used to extract, e.g., a chroma D as shown in
FIG. 7. The peaks of the comb pattern may be at 147, 294,
588, 1175, 2350, and 4699 Hz.

Third, to extract the chroma D from a given frame of a
song, the frame’s spectrum may be multiplied with the above
comb pattern. The result of the multiplication is illustrated in
FIG. 8, and represents all the spectral content needed for the
calculation of the chroma D in the chroma vector of this
frame. The magnitude of this element is then simply a sum-
mation of the spectrum along the frequency axis.

Fourth, to calculate the remaining 11 chromas the system
herein may generate the appropriate comb patterns for each of
the chromas, and the same process is repeated on the original
spectrum.

In some possible embodiments, a chromagram may be
computed using Gaussian weighting (on a log-frequency
axis; which may, but is not limited to, be normalized). The
Gaussian weighting may be centered at a log-frequency point,
denoted as a center frequency “f_ctr”, on the log-frequency
axis. The center frequency “f_ctr” may be set to a value of
ctroct (in units of octaves or cents/1200, with the referential
origin at A0), which corresponds to a frequency of 27.5*
(2°ctroct) in units of Hz. The Gaussian weighting may be set
with a Gaussian half-width of f_sd, which may be set to a
value of octwidth in units of octaves. For example, the mag-
nitude of the Gaussian weighting drops to exp(-0.5) at a
factor of 2 octwidth above and below the center frequency
f_ctr. In other words, in some possible embodiments, instead
of using individual perceptually motivated BPFs as previ-
ously described, a single Gaussian weighting filter may be
used.

Thus, for ctroct=5.0 and octwidth=1.0, the peak of the
Gaussian weighting is at 880 Hz, and the weighting falls to
approximately 0.6 at 440 Hz and 1760 Hz. In various possible
embodiments, the parameters of the Gaussian weighting may
be preset, and additionally and/or optionally, configurable by
a user manually and/or by a system automatically. In some
possible embodiments, a default setting of ctroct=5.1844
(which gives f_ctr=1000 Hz) and octwidth=1 may be present
or configured. Thus, the peak of the Gaussian weighting for
this example default setting is at 1000 Hz, and the weighting
falls to approximately 0.6 at 500 and 2000 Hz.
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Thus, in these embodiments, the chromagram herein may
be computed on a rather restricted frequency range. This can
be seen from the plots of a corresponding weighting matrix as
illustrated in FIG. 9. If the f_sd of the Gaussian weighting is
increased to 2 in units of octaves, the spread of the weighting
for the Gaussian weighting is also increased. The plot of a
corresponding weighting matrix looks as shown in FIG. 10.
As a comparison, the weighting matrix looks as shown in
FIG. 11 when operating with an {__sd having a value of 3 to 8
octaves.

FIG. 12 illustrates an example chromagram plot associated
with example media data in the form of a piano signal (with
musical notes of gradually increasing octaves) using a per-
ceptually motivated BPF. In comparison, FIG. 13 illustrates
an example chromagram plot associates with the same piano
signal using the Gaussian weighting. The framing and shift is
chosen to be exactly same for the purposes of making com-
parison between the two chromagram plots.

The patterns in both chromagram plots look similar. A
perceptually motivated band-pass filter may provide better
energy concentration and separation. This is visible for the
lower notes, where the notes in the chromagram plot gener-
ated by the Gaussian weighting look hazier. While the differ-
ent BPFs may impact chord recognition applications difter-
ently, a perceptually motivated filter brings little added
benefits for segment (e.g., chorus) extraction.

In some possible embodiments, the chromagram and fin-
gerprint extraction as described herein may operate on media
data in the form of'a 16-kHz sampled audio signal. Chroma-
gram may be computed with STFT with a 3200-sample Hann
window using FFT. A FFT frame may be shifted by 800
samples with a discrete time step (e.g., 1 frame shift) of S0 ms.
It should be noted that other sampled audio signals may be
processed by techniques herein. Furthermore, for the purpose
of the present invention, a chromagram computed with a
different transform, a different filter, a different window func-
tion, a different number of samples, a different frame shift,
etc. is also within the scope of the present invention.

5. Other Features

Techniques herein may use various features that are
extracted from the media data such as MFCC, rhythm fea-
tures, and energy described in this section. As previously
noted, some, or all, of extracted features as described herein
may also be applied to scene change detection. Additionally
and/or optionally, some, or all, of these features may also be
used by the ranking component as described herein.

5.1 Mel-Frequency Cepstral Coefficients (MFCC)

Mel-frequency Cepstral coefficients (MFCCs) aim at pro-
viding a compact representation of the spectral envelope of an
audio signal. The MFCC features may provide a good
description of the timbre and may also be used in musical
applications of the techniques as described herein.

5.2 Rhythm Features

Some algorithmic details of computing the rhythmic fea-
tures may be found in Hollosi, D., Biswas, A., “Complexity
Scalable Perceptual Tempo Estimation from HE-AAC
Encoded Music,” in 1287 AES Convention, London, UK,
22-25 May 2010, the entire contents of which is hereby incor-
porated by reference as if fully set forth herein. In some
possible embodiments, perceptual tempo estimation from
HE-AAC encoded music may be carried out based on modu-
lation frequency. Techniques herein may include a perceptual
tempo correction stage in which rhythmic features are used to
correct octave errors. An example procedure for computing
the rhythmic features may be described as follows.

In the first step, a power spectrum is calculated; a Mel-
Scale transformation is then performed. This step accounts
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for the non-linear frequency perception of the human audi-
tory system while reducing the number of spectral values to
only a few Mel-Bands. Further reduction of the number of
bands is achieved by applying a non-linear companding func-
tion, such that higher Mel-bands are mapped into single bands
under the assumption that most of the rhythm information in
the music signal is located in lower frequency regions. This
step shares the Mel filter-bank used in the MFCC computa-
tion.

In the second step, a modulation spectrum is computed.
This step extracts rhythm information from media data as
described herein. The rhythm may be indicated by peaks at
certain modulation frequencies in the modulation spectrum.
In an example embodiment, to compute the modulation spec-
trum, the companded Mel power spectra may be segmented
into time-wise chunks of 6 s length with certain overlap over
the time axis. The length of the time-wise chunks may be
chosen from a trade-off between costs and benefits involving
computational complexity to capture the “long-time rhythmic
characteristics” of an audio signal. Subsequently, an FFT may
be applied along the time-axis to obtain a joint-frequency
(modulation spectrum: x-axis—modulation frequency and
y-axis—companded Mel-bands) representation for each 6 s
chunk. By weighting the modulation spectrum along the
modulation frequency axis with a perceptual weighting func-
tion obtained from analysis of large music datasets, very high
and very low modulation frequencies may be suppressed
(such that meaningful values for the perceptual tempo cor-
rection stage may be selected).

In the third step, the rhythmic features may then be
extracted from the modulation spectrum. The rhythmic fea-
tures that may be beneficial for scene-change detection are:
rhythm strength, rhythm regularity, and bass-ness. Rhythm
strength may be defined as the maximum of the modulation
spectrum after summation over companded Mel-bands.
Rhythm regularity may be defined as the mean of the modu-
lation spectrum after normalization to one. Bass-ness may be
defined as the sum of the values in the two lowest companded
Mel-bands with a modulation frequency higher than one (1)
Hz.

6. Detection of Repetitive Parts

In some possible embodiments, repetition detection (or
detection of repetitive parts) as described herein may be based
on both fingerprints and chroma features. FIG. 14 depicts an
example detailed block diagram of the system. FIG. 15 shows
example chroma distance values for a row of the similarity
matrix, the smoothed distance and the resulting seed point for
the scene change detection.

7. Refinement Using Scene Change Detection

In some possible embodiments, a position in media data
such as a song, after having been identified by a feature
distance analysis such as a chroma distance analysis as the
most likely inside a candidate representative segment with
certain media characteristics may be used as a seed time point
for scene change detection. Examples of media characteris-
tics for the candidate representative segment may be repeti-
tion characteristics possessed by the candidate representative
segment in order for the segment to be considered as a can-
didate for the chorus of the song; the repetition characteris-
tics, for example, may be determined by the selective com-
putations of the distance matrix as described above.

In some possible embodiments, the scene change detection
block of FIG. 14 may be configured in a system herein to
identify two scene changes (e.g., in audio) in the vicinity of
the seed time point:
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a beginning scene change point to the left of the seed time
point corresponding to the beginning of the representa-
tive segment;

an ending scene change point to the right of the seed time
point corresponding to the end of the representative seg-
ment.

8. Ranking

The ranking component of FIG. 14 may be given several
candidate representative segments for possessing certain
media characteristics (e.g., the chorus) as input signals and
may select one of the candidate representative segments as
the output of the signal, regarded as the representative seg-
ment (e.g., a detected chorus section). All candidates repre-
sentative segments may be defined or delimited by their
beginning and ending scene change points (e.g., as a result
from the scene change detection described herein).
8.1. Ranking Using Weighted Scores

In some possible embodiments, a rule-based ranking
method may be used to select one of the candidate represen-
tative segments as the representative segment. In some pos-
sible embodiments, features used for ranking in the rule-
based ranking method are structural properties, tonality
including harmony and melody, timbre, rhythm, loudness,
stereo mix, or a quantity of sound sources of the candidate
representative segments. Scores may be computed from one
or more of these features. For example, a similarity score may
be computed for a candidate representative segment as 1
minus the distance. Additionally and/or optionally, an energy
score may be computed for the candidate representative seg-
ment. In some possible embodiments, both similarity and
energy scores may be normalized by the time-wise length of
the candidate representative segment, for example, to account
for different lengths of different candidate segments. Addi-
tionally and/or optionally, a duration score may be defined as

) g(dur]
427

and may take its maximum value, for example, at a time
duration of 27 seconds. The duration score may reach its
maximum value at a duration that is typical for the segment to
be detected. The score can be computed by using a function
that is decreasing as the duration of the detected segment
deviates from the typical length. All scores are further nor-
malized to a maximum value of one; and their values may be
weighted and added to a total score. In an example, the
weighting factors for the features in ranking (e.g., similarity,
energy, and duration) may be 3, 1 and 0.2. The candidate
representative segment with the highest score may be selected
as the representative segment of the media data (e.g., a
detected chorus). In a possible embodiment, the scores may
be applied in terms of hierarchical conditions in a certain
order forming rules. An example for such a rule may be: if a
certain score exceeds a certain threshold, then check if
another condition is fulfilled, etc.
8.2. Ranking Using Statistical Models

Probabilistic models (Gaussian mixture models, decision
trees) can be used to not only obtain the weights, but also to
obtain the score directly. In this case no weights for the
individual cues are needed. In some possible embodiments,
the rule-based ranking method implemented by a system as
described herein may use the following three cues are used to
a create a total score for each candidate segment:

Cue 1: Representative segments may have certain distin-

guishable energy characteristics relative to other seg-
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ments in the media data. For example, a chorus section
may be louder than other parts of the song.

Cue 2: Representative segments may have certain distin-
guishable similarity characteristics relative to other seg-
ments in the media data. For example, the chorus seg-
ment is the most identically repeating section of the
song.

Cue 3: Representative segments may have certain distin-
guishable duration characteristics relative to other seg-
ments in the media data. For example, chorus segments
may be between 10 and 35 s. This cue is useful to filter
out (or remove from consideration) small repeating sec-
tions of music.

The following are some examples of additional cues that
may be useful in ranking the candidate representative seg-
ments for the purpose of detecting or selecting one or more
representative segment with certain media characteristics
(e.g., chorus sections).

Cue 4: Representative segments may have certain distin-
guishable singing voice characteristics relative to other
segments in the media data. For instance, a singing voice
detector may help rank (e.g., eliminate) candidate rep-
resentative segments that are repeating but have or do
not have any singing voice in them.

Cue 5: Representative segments may have certain distin-
guishable similarity ratio characteristics relative to other
segments in the media data. For instance, chorus seg-
ments as clusters have high intra-cluster similarity while
having low similarity to rest of the features in the song.
A ratio that captures this aspect in the form of a similar-
ity ratio may be computed. The similarity ratio may be
the ratio of the similarity of features within the same
cluster to the similarity of features to the rest of the song.

Cue 6: Representative segments may have certain distin-
guishable similarity-to-the-last-loudest-section ratio
characteristics relative to other segments in the media
data. For example, chorus segments may repeat at the
end of a song usually louder. Candidate representative
segments can be compared to the loudest section, or a
section at the end of the song, or the loudest section from
the end section of a song using a similarity measure.

Cue 7: Representative segments may have certain distin-
guishable time-wise positions characteristics relative to
other segments in the media data. For example, chorus
segments may be more likely after 25 s. This cue is
useful to filter out or to provide a relatively low ranking
score to relatively early sections of music.

Cue 8: Representative segments may have more sound
sources playing, which can be reflected in a measure as
the perceptual entropy or a measure for co-modulation.
For example, chorus segments usually have more sound
sources playing at the same time whereas during verse
sections in a song the singing voice is usually dominant.
The number of sound sources mixed in the signal may be
indirectly measured by computing perceptual entropy
from an audio signal. Perceptual entropy may be calcu-
lated from a Signal to Mask Ratio (SMR) parameter
derived from a psycho-acoustic analysis.

Cue 9: Representative segments may have certain distin-
guishable stereo parameters characteristics relative to
other segments in the media data. Examples of stereo
parameters include but are not limited to: Coherence,
Inter-channel Cross-Correlation (ICC), Inter-channel
Level Difference (CLD), Inter-channel Phase Differ-
ence (IPD), or Channel Prediction Coefficients (CPC).
For example, as noted earlier, chorus segments usually
have more sound sources (e.g., instruments) playing at
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the same time and are mixed in such a way that the sound
sources produce a wider sound image during chorus
sections.

Cue 10: Representative segments may have certain distin-
guishable rhythm characteristics relative to other seg-
ments in the media data. For example, it has been
observed that certain rhythm based features such as
rhythm strength have discriminative capability or rhyth-
mic patterns to differentiate between a chorus section
and verse sections. Such rhythm based features may also
be used for ranking the candidate representative seg-
ments.

Cue 11: The absolute time position (in seconds) and rela-
tive time position (in relation to the song length) is a cue
for ranking.

Cue 12: A measure of dynamics of the segment is a cue for
ranking. As an example, chorus segments have a more
restricted dynamic range, and are commonly louder than
verse sections which may vary more dynamically and
may be generally less energy.

Other cues: Representative segments may have certain
other distinguishable characteristics relative to other
segments in the media data. For example, it has been
observed that a measure for overlapping between differ-
ent candidate representative segments, spectral contrast,
spectral centroid, spectral bandwidth, spectral roll-off,
spectral flatness may be different between a representa-
tive segment such as a chorus section and other sections
in the media data. These features may alternatively and/
or optionally be used for ranking the candidate repre-
sentative segments.

Some, or all, of these cues may be helpful and included in
detecting representative segments from candidate represen-
tative segments. For example, some, or all, of these cues may
be included in techniques described herein to detect the cho-
rus from the song, or a unique segment from the song. How-
ever, the relative significance of each of these may need to be
determined. In some possible embodiments, rule-based rank-
ing techniques herein may determine the weights for all cues
that are used to rank candidate representative segments.

In some possible embodiments, the weights for these cues
(e.g., for top three cues listed if these are cues involved in
ranking candidate representative segments) may be chosen
heuristically, for example, based on studying empirical
results using rule-based ranking techniques herein.

However, as the number of cues that are to be combined in
order to detect a representative segment increases, manual
tuning of the weights associated with each of the cues may
become less tractable.

In order to determine how to combine these different cues,
statistical models and machine learning methods can be used.
One example for a machine learning method is Adaboost.
Statistical models can be used to predict the likelihood of a
candidate segment to be representative segment (e.g. chorus
segment). These models can be trained on the features
extracted from training data. For each segment from the train-
ing data a measure of quality can define how well the segment
represents a segment with certain characteristics. The statis-
tical model then represents the joint probability density func-
tion of the feature space and the quality measure. The model
can then be applied on the feature space of a segment during
the ranking procedure to predict the quality measure for the
given segment.

Examples for statistical models that can be used are Gaus-
sian mixture models (GMMs), Hidden Markov models
(HMMs), Support Vector Machines (SVMs).
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Another possibility is to use decision and regression trees
for ranking that represent a number of rules that are applied in
a hierarchical manner to the features. Decision and regression
trees can be formulated by machine learning algorithms such
as Adaboost.

Ranking Score Based on a Classification Framework

Given a set of labeled training data (chorus/NOT chorus),
Adaboost combines the decisions of a set of weak classifiers
to arrive at a stronger classifier. Each of the cues may be
treated as a feature for a weak-classifier. For instance, a can-
didate representative segment may be classified as being a
chorus segment just based on computed energy score for that
candidate representative segment (e.g., if the energy score is
greater than a threshold, then the candidate segment is clas-
sified as a chorus segment). Such a classifier (also known as
decision stump) may not have a high classification accuracy
(e.g., >0.85) but the classification accuracy is expected to be
at least >0.5. Accordingly, by using Adaboost, a number of
such weak classifiers may be combined to obtain a strong
classifier with high accuracy. While learning the final strong
classifier, Adaboost also may determine the relative signifi-
cance of each of the weak classifiers (and hence the relative
significance of the different cues).

Formally, Adaboost, or the Adaboost learning framework,
may be formulated as follows. Given a set of training data
with M candidate representative segments consisting of both
examples of the representative segments (e.g., chorus sec-
tions) and non-representative segments (e.g., non-chorus sec-
tions), each candidate representative segment in the training
data may be represented with N media features. In some
possible embodiments, these N features may be derived based
on the cues described earlier. The feature vector derived from
candidate representative segment “i” may be represented as
X, (aN-dimensional feature vector, wherei=1, 2, ... M). Also,
a ground truth label Y, may be associated with each of the
candidate representative segments indicating whether the
candidate representative segment is a representative segment
(e.g., a chorus section) or a non-representative segment (e.g.,
a non-chorus section). In an example, Y =+1 for being a
representative segment (e.g., a chorus section); and Y,=-1 for
being a non-representative segment (e.g., a non-chorus sec-
tion).

T weak classifiers may be defined as h, (wheret=1,2...T).
Here each h, maps an input feature vector (X,) to a predicated
label (Y, ). The predicted truth label Y, , to which the weak
classifier (h,) maps the input feature vector X; matches the
ground truth label Y, at least more than 50% among the M
training instances in the training data.

Given the training data, an Adaboost learning algorithm
may select T such weak-classifiers and also learn a Set of
weights a, corresponding to each of the weak classifiers.
Finally, the strong classifier H(x) may be expressed as in the
equation below:

T
Hx) = sign[z a,h,m]

t=1

Ranking Score Based on a Regression Framework

In some possible embodiments, these N features may be
derived based on the cues described earlier. The feature vector
derived from candidate representative segment “i” may be
represented as X, (a N-dimensional feature vector, where i=1,
2,...M). Also, a ground truth score Y, may be associated with
each of the candidate representative segments indicating

10

15

20

25

30

35

40

45

50

55

60

65

16

whether the candidate representative segment is a represen-
tative segment (e.g., a chorus section) or a non-representative
segment (e.g., a non-chorus section). In the previous example
using Adaboost, Y, represented a discrete label that can take
on one of a set of values. For example +1 indicates a chorus
segment and -1 indicates as non-chorus segment. Alterna-
tively, as in this case, Y, may represent a ground truth score
which take on any floating point value between 0 and 1. In an
example, Y, =0.9 for being a representative segment that has
high overlap with a manually labeled chorus section; and
Y,=0.1 for being a non-representative segment (it has low
overlap with a manually labeled chorus section).

An objective measure called “F-measure” can be used as a
ground-truth score. The F-measure corresponds to the
amount of overlap of two different segments. For our task it
specifies the overlap between the detected chorus segment
and the manually labeled chorus segment (serving as ground
truth). The F-measure is defined as the geometric mean of the
recall rate R and the precision rate P and is determined by the
length of the correct segment (corresponding to the manual
labeled chorus section) and the detected chorus section (as
illustrated in FIG. 18).

Loy
R= .
1.’
P=Lcd
Ly
2RP
F=
R+P

The recall rate R denotes the ratio of the correctly detected
length to the correct part, thus it reaches its maximum value if
the detected segment fully covers the correct segment (and
even exceeds it). The precision rate denotes the ratio of the
correctly detected segment and the detected segment, thus it
reaches its maximum if the detected segment does not exceed
the range of the correct segment.

In the previous Adaboost based ranking, given a set of
chorus features X, ={x_1, ... x_f} for each candidate segment
iand a set of labels Y,={+1,-1}, we used Adaboost

(1) to select a subset of features

(i) to combine the selected features and obtain a classifi-

cation decision (score) indicating the likelihood of the
candidate segment to be a chorus segment.

The problem with this formulation is that the obtained
Adaboost score may not be monotonically related to the
F-measure of the candidate segment. For instance, two can-
didate segments with F_measure=0.75 and 0.95 are consid-
ered as positive examples. However, the Adaboost score for
the segment with F-measure=0.95 can be lower than that of
the other segment.

In order to obtain a monotonic relationship between the
ranking score and F-measure, we could use one of the follow-
ing regression methods instead of the Adaboost classification
method.

Given a set of chorus features X, ={X,, . . . X,,} for each
candidate segment i and a set of output values Y, belonging to
the interval [0,1], we would like to learn a mapping function
G(X,) such that G(X,)=Y,. Here Y, is equal to the F-measure
of the corresponding candidate segment 1.

Method 1: Gaussian Mixture Model (GMM) Based
Regression.

1) First model the joint pdf p(X,Y) using a GMM. The

parameters of the GMM are learnt from the training data.
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2) Then, the mapping function G(X,) is derived based con-
ditional pdfofY given X. Fora GMM, this can be written
as follows:

Let mu_k and sigma_k be the mean and covariance matrix
of k”” GMM component of p(X,Y). Then, mu_k may be writ-
ten as {mu_x_k mu_y_k} and sigma_k may be written as
[sigma_xx_k sigma_xy_k; sigma_yx_k sigma_yy_k]|.

Then, the conditional mean of y for k” component may be
written as follows:

E(y_k/X;)=mu_y_k+sigma_xy_k*inv(sigma_xx_k)*
X;-mu_x_k)
Letbeta_k be the probability that X, belongs to component
k, then the final mapping function G(X,) is simply the
weighted sum as given below:

E(y/X_i)=sum beta_k*E(y_k/X_i)

Method 2: Support Vector Machines (SVM) Based Regres-
sion.

Given the training data and a chosen Kernel function K, the
SVM based regression method learns a set of parameters such
that the loss function between (G(X_i)) and Y_i is minimized.

In particular, the mapping function is of the form:

G(X_i)=(sum_{m=1}alpha_m*K(X_m,X_i))+b

Here alpha_m is the parameter of the mapping function in
the kernel space. X_m are support vectors. K(X_m, X_i) is
the kernel function value evaluated between X_m and input
X_i and usually expresses the similarity between X_m and
X i

One example of the kernel function that is often used is of
the form:

K(X_mX_iy=exp(-0.5(X_m-X_)T(X_m-X_i)/
gamma)
Where gamma is a parameter of the kernel.
9. Other Applications

Techniques as described herein may be used to detect cho-
rus segments from music files. However, in general the tech-
niques as described herein are useful in detecting any repeat-
ing segment in any audio file.

10. Example Process Flow

FIG. 16 illustrates an example process flow according to
possible embodiments of the present invention. In some pos-
sible embodiments, one or more computing devices or com-
ponents in a media processing system may perform this pro-
cess flow. In block 1632, a media processing system assigns a
plurality of ranking scores to a plurality of candidate repre-
sentative segments. Each individual candidate representative
segment in the plurality of candidate representative segments
comprises at least one scene in one or more statistical patterns
in media features of the media data based on one or more
types of features extractable from the media data. Each indi-
vidual ranking score in the plurality of ranking scores may be
assigned to an individual candidate representative segment in
the plurality of candidate representative segments.

In block 1634, the media processing system selects from
the candidate representative segments, based on the plurality
of ranking scores, a representative segment to be played to an
end user.

In some possible embodiments, each individual ranking
score in the plurality of ranking scores comprises one or more
component scores; at least one component score in the one or
more component scores relates to at least one of structural
properties, tonality including harmony and melody, timbre,
rhythm, loudness, stereo mix, or a quantity of sound sources
of the media data.
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In some possible embodiments, each individual ranking
score in the plurality of ranking scores comprises at least one
component score based on one or more of: duration, a mea-
sure for overlapping between different candidate representa-
tive segments, time-wise positions of candidate representa-
tive segments in the media data, chroma distance, MFCC,
spectral contrast, spectral centroid, spectral bandwidth, spec-
tral roll-off, spectral flatness, presence of singing voice,
absence of singing voice, one or more rhythm patterns,
energy, one or more stereo parameters, or perceptual entropy.

In some possible embodiments, an individual ranking
score comprises one or more component scores, each being
assigned one in a plurality of weight factors. In some possible
embodiments, an individual ranking score is obtained by
using a probabilistic learning framework. In some possible
embodiments, the probabilistic learning framework is a clas-
sification framework (e.g. Adaboost, GMMs, HMMs, SVMs)
that is based on training data consisting of examples and
discrete labels of the corresponding examples. In some pos-
sible embodiments, the probabilistic learning framework is a
regression framework (e.g. GMMs, SVMs, Neural Networks,
Regression trees) that is based on training data consisting of
examples and a continuous objective measure of quality such
as the F-measure of the corresponding examples.

In some possible embodiments, an individual ranking
score may be obtained based on a probabilistic learning
framework. The probabilistic learning framework could be a
classification framework that is based on training data con-
sisting of examples and their corresponding discrete labels.
For instance, Adaboost is an example of a classification
framework. The probabilistic learning framework could be a
regression framework that is based on training data consisting
of examples and their corresponding continuous objective
measure of quality (e.g. F-measure). For instance, GMMs,
SVMs, Neural Networks & regression trees can be used for
regression.

In some possible embodiments, the media processing sys-
tem may set the plurality of weight factors using a probabi-
listic learning framework, e.g., with a boost algorithm. In
some possible embodiments, the media processing system
may obtain the total score for a segment by applying statisti-
cal models, e.g. Gaussian mixture models, Hidden Markov
Models.

In some possible embodiments, the media processing sys-
tem may set the scores for segments using one or more rules.
The rules can be formulated as decision and regression trees.

In some possible embodiments, the media processing sys-
tem may select as the representative segment candidate rep-
resentative segment with a ranking score that is large in rela-
tion to other ranking scores assigned to other candidate
representative segments in the plurality of candidate repre-
sentative segments.

In some possible embodiments, a media processing system
may determine a strong classifier based on features extracted
from training media segments. The media processing system
may create a set of feature vectors by extracting a plurality of
features from a training set of media segments. More specifi-
cally, each individual feature vector in the set of feature
vectors comprises a plurality of features extracted from an
individual segment in the plurality of media segment. The
media processing system may associate a set of reference
truth labels with the training set of media segments. More
specifically, each individual segment in the training set of
media segments is associated with an individual reference
truth label in the set of reference truth labels. The media
processing system may calculate a plurality of sets of weak
classifiers; each individual set of weak classifier in the plu-
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rality of weak classifiers maps the set of features to a set of
predicted truth labels. The media processing system may
determine a plurality of weights for the plurality of sets of
weak classifiers, for example, using a probabilistic learning
framework and/or using a boost algorithm such as “Ada-
boost”. Each individual set of weak classifiers in the plurality
of'sets of weak classifiers is given an individual weight in the
plurality of weights. The media processing system may cre-
ate, based on the plurality of sets of weak classifiers and the
plurality of weights, a strong classifier that is to be applied to
media data to rank and select a representative segment in a
plurality of candidate representative segments. In some pos-
sible embodiments, the probabilistic learning framework may
be, but is not limited to, either a classification framework or a
regression framework.

In some possible embodiments, at least one feature in the
plurality of features relates to at least one of: structural prop-
erties, tonality including harmony and melody, timbre,
rhythm, loudness, stereo mix, or a quantity of sound sources
of'a segment in the training set.

In some possible embodiments, at least one weak classifier
in a set of weak classifiers in the plurality of sets of weak
classifiers relates to one or more of: duration, a measure for
overlapping between different candidate representative seg-
ments, time-wise positions of candidate representative seg-
ments in the media data, chroma distance, MFCC, spectral
contrast, spectral centroid, spectral bandwidth, spectral roll-
off, spectral flatness, presence of singing voice, absence of
singing voice, one or more rhythm patterns, energy, one or
more stereo parameters, or perceptual entropy.

In some possible embodiments, at least one of the one or
more types of features herein is used in part to form a digital
representation of the media data. For example, the digital
representation of the media data may comprise a fingerprint-
based reduced dimension binary representation of the media
data.

In some possible embodiments, at least one of the one or
more types of features comprises a type of features that cap-
tures structural properties, tonality including harmony and
melody, timbre, rhythm, loudness, stereo mix, or a quantity of
sound sources as related to the media data.

In some possible embodiments, the features extractable
from the media data are used to provide one or more digital
representations of the media data based on one or more of:
chroma, chroma difference, fingerprints, Mel-Frequency
Cepstral Coefficient (MFCC), chroma-based fingerprints,
rhythm pattern, energy, or other variants.

In some possible embodiments, the features extractable
from the media data are used to provide one or more digital
representations relates to one or more of: fast Fourier trans-
forms (FFTs), digital Fourier transforms (DFTs), short time
Fourier transforms (STFTs), Modified Discrete Cosine
Transforms (MDCTs), Modified Discrete Sine Transforms
(MDSTs), Quadrature Mirror Filters (QMFs), Complex
QMFs (CQMFs), discrete wavelet transforms (DWTs), or
wavelet coefficients.

As used herein, the media data may comprise one or more
of: songs, music compositions, scores, recordings, poems,
audiovisual works, movies, or multimedia presentations. The
media data may be derived from one or more of: audio files,
media database records, network streaming applications,
media applets, media applications, media data bitstreams,
media data containers, over-the-air broadcast media signals,
storage media, cable signals, or satellite signals.

As used herein, the stereo mix may comprise one or more
stereo parameters of the media data. In some possible
embodiments, at least one of the one or more stereo param-
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eters relates to: Coherence, Inter-channel Cross-Correlation
(ICC), Inter-channel Level Difference (CLD), Inter-channel
Phase Difference (IPD), or Channel Prediction Coefficients
(CPQO).

In some embodiments in which chroma features are used in
techniques herein, the chroma features may be extracted
using one or more window functions. These window func-
tions may be, but are not limited to: musically motivated,
perceptually motivated, etc.

As used herein, the features extractable from the media
data may or may not relate to a tuning system of 12 equal
temperaments.

11. Implementation Mechanisms—Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose com-
puting devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include
digital electronic devices such as one or more application-
specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs) that are persistently programmed to
perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

For example, FIG. 17 is a block diagram that illustrates a
computer system 1700 upon which an embodiment of the
invention may be implemented. Computer system 1700
includes a bus 1702 or other communication mechanism for
communicating information, and a hardware processor 1704
coupled with bus 1702 for processing information. Hardware
processor 1704 may be, for example, a general purpose
Mmicroprocessor.

Computer system 1700 also includes a main memory 1706,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 1702 for storing information
and instructions to be executed by processor 1704. Main
memory 1706 also may be used for storing temporary vari-
ables or other intermediate information during execution of
instructions to be executed by processor 1704. Such instruc-
tions, when stored in storage media accessible to processor
1704, render computer system 1700 into a special-purpose
machine that is customized to perform the operations speci-
fied in the instructions.

Computer system 1700 further includes a read only
memory (ROM) 1708 or other static storage device coupled to
bus 1702 for storing static information and instructions for
processor 1704. A storage device 1710, such as a magnetic
disk or optical disk, is provided and coupled to bus 1702 for
storing information and instructions.

Computer system 1700 may be coupled via bus 1702 to a
display 1712 for displaying information to a computer user.
An input device 1714, including alphanumeric and other
keys, is coupled to bus 1702 for communicating information
and command selections to processor 1704. Another type of
user input device is cursor control 1716, such as a mouse, a
trackball, or cursor direction keys for communicating direc-
tion information and command selections to processor 1704
and for controlling cursor movement on display 1712. This
input device typically has two degrees of freedom in two axes,
a first axis (e.g., X) and a second axis (e.g., y), that allows the
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device to specify positions in a plane. Computer system 1700
may be used to control the display system.

Computer system 1700 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic which
in combination with the computer system causes or programs
computer system 1700 to be a special-purpose machine.
According to one embodiment, the techniques herein are
performed by computer system 1700 in response to processor
1704 executing one or more sequences of one or more instruc-
tions contained in main memory 1706. Such instructions may
be read into main memory 1706 from another storage
medium, such as storage device 1710. Execution of the
sequences of instructions contained in main memory 1706
causes processor 1704 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry may
be used in place of or in combination with software instruc-
tions.

The term “storage media” as used herein refers to any
media that store data and/or instructions that cause a machine
to operation in a specific fashion. Such storage media may
comprise non-volatile media and/or volatile media. Non-
volatile media includes, for example, optical or magnetic
disks, such as storage device 1710. Volatile media includes
dynamic memory, such as main memory 1706. Common
forms of storage media include, for example, a floppy disk, a
flexible disk, hard disk, solid state drive, magnetic tape, or any
other magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium with pat-
terns of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM, NVRAM, any other memory chip or cartridge.

Storage media is distinct from but may be used in conjunc-
tion with transmission media. Transmission media partici-
pates in transferring information between storage media. For
example, transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus
1702. Transmission media can also take the form of acoustic
orlight waves, such as those generated during radio-wave and
infra-red data communications.

Various forms of media may be involved in carrying one or
more sequences of one or more instructions to processor 1704
for execution. For example, the instructions may initially be
carried on a magnetic disk or solid state drive of a remote
computer. The remote computer can load the instructions into
its dynamic memory and send the instructions over a tele-
phone line using a modem. A modem local to computer
system 1700 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 1702. Bus 1702 carries the data to main memory 1706,
from which processor 1704 retrieves and executes the instruc-
tions. The instructions received by main memory 1706 may
optionally be stored on storage device 1710 either before or
after execution by processor 1704.

Computer system 1700 also includes a communication
interface 1718 coupled to bus 1702. Communication inter-
face 1718 provides a two-way data communication coupling
to a network link 1720 that is connected to a local network
1722. For example, communication interface 1718 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data com-
munication connection to a corresponding type of telephone
line. As another example, communication interface 1718 may
be a local area network (LAN) card to provide a data com-
munication connection to a compatible LAN. Wireless links
may also be implemented. In any such implementation, com-
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munication interface 1718 sends and receives electrical, elec-
tromagnetic or optical signals that carry digital data streams
representing various types of information.

Network link 1720 typically provides data communication
through one or more networks to other data devices. For
example, network link 1720 may provide a connection
through local network 1722 to ahost computer 1724 or to data
equipment operated by an Internet Service Provider (ISP)
1726. ISP 1726 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 1728. Local
network 1722 and Internet 1728 both use electrical, electro-
magnetic or optical signals that carry digital data streams. The
signals through the various networks and the signals on net-
work link 1720 and through communication interface 1718,
which carry the digital data to and from computer system
1700, are example forms of transmission media.

Computer system 1700 can send messages and receive
data, including program code, through the network(s), net-
work link 1720 and communication interface 1718. In the
Internet example, a server 1730 might transmit a requested
code for an application program through Internet 1728, ISP
1726, local network 1722 and communication interface 1718.
The received code may be executed by processor 1704 as it is
received, and/or stored in storage device 1710, or other non-
volatile storage for later execution.

12. Equivalents, Extensions, Alternatives and Miscellaneous

Inthe foregoing specification, possible embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. Thus, the sole and exclusive indicator of what is
the invention, and is intended by the applicants to be the
invention, is the set of claims that issue from this application,
in the specific form in which such claims issue, including any
subsequent correction. Any definitions expressly set forth
herein for terms contained in such claims shall govern the
meaning of such terms as used in the claims. Hence, no
limitation, element, property, feature, advantage or attribute
that is not expressly recited in a claim should limit the scope
of'such claim in any way. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.

What is claimed is:

1. A method for ranking candidate representative segments
within media data, comprising:

creating one or more media fingerprints each of which

comprises a plurality of hash bits generated from the
media data;

extracting features from the media data;

detecting a plurality of scenes within the media data based

at least in part on the one or more media fingerprints and
a distance analysis for the features extracted from the
media data;

assigning a plurality of ranking scores to a plurality of

candidate representative segments in the media data,
each individual candidate representative segment in the
plurality of candidate representative segments com-
prises at least one scene of the plurality of scenes in the
media data, each individual ranking score in the plurality
of ranking scores being assigned to an individual candi-
date representative segment in the plurality of candidate
representative segments;

selecting from the plurality of candidate representative

segments, based on the plurality of ranking scores, a
representative segment;

wherein the method is performed by one or more comput-

ing devices.
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2. The method of claim 1, wherein each individual ranking
score in the plurality of ranking scores comprises one or more
component scores, at least one component score in the one or
more component scores relates to at least one of structural
properties, tonality including harmony and melody, timbre,
rhythm, loudness, stereo mix, or a quantity of sound sources
of the media data.

3. The method of claim 2, further comprising setting one or
more weights for the one or more component ranking scores
using one or more rules.

4. The method of claim 1, wherein each individual ranking
score in the plurality of ranking scores comprises at least one
component score based on one or more of: duration, a mea-
sure for overlapping between different candidate representa-
tive segments, time-wise positions of candidate representa-
tive segments in the media data, chroma distance, MFCC,
spectral contrast, spectral centroid, spectral bandwidth, spec-
tral roll-off, spectral flatness, presence of singing voice,
absence of singing voice, one or more rhythm patterns,
energy, one or more stereo parameters, perceptual entropy,
co-modulation, or dynamics.

5. The method of claim 1, wherein an individual ranking
score comprises one or more component scores, each being
assigned a weight factor in a plurality of weight factors.

6. The method of claim 1, wherein an individual ranking
score is obtained by using a probabilistic learning framework.

7. The method of claim 5, further comprising setting the
plurality of weight factors using a probabilistic learning
framework.

8. The method of claim 5, further comprising setting the
plurality of weight factors using at least one statistical model.

9. The method of claim 5, further comprising setting the
plurality of weight factors using one or more rules.

10. The method of claim 5, further comprising setting the
plurality of weight factors using a boost algorithm.

11. The method of claim 1, wherein the representative
segment corresponds to a candidate representative segment
with a ranking score that is large in relation to other ranking
scores assigned to other candidate representative segments in
the plurality of candidate representative segments.

12. The method of claim 1, wherein the features extracted
from the media data are used to provide one or more digital
representations of the media data based on one or more of:
chroma, chroma difference, fingerprints, Mel-Frequency
Cepstral Coefficient (MFCC), chroma-based fingerprints,
rhythm pattern, energy, or other variants.

13. The method of claim 1, wherein the features extracted
from the media data are used to provide one or more digital
representations relates to one or more of: fast Fourier trans-
forms (FFTs), digital Fourier transforms (DFTs), short time
Fourier transforms (STFTs), Modified Discrete Cosine
Transforms (MDCTs), Modified Discrete Sine Transforms
(MDSTs), Quadrature Mirror Filters (QMFs), Complex
QMFs (CQMFs), discrete wavelet transforms (DWTs), or
wavelet coefficients.

14. The method of claim 1, further comprising deriving the
media data from one or more of: audio files, media database
records, network streaming applications, media applets,
media applications, media data bitstreams, media data con-
tainers, over-the-air broadcast media signals, storage media,
cable signals, or satellite signals.

15. The method of claim 1, wherein the features extracted
from the media data relate to a tuning system of 12 equal
temperaments.

16. A non-transitory computer readable storage medium,
comprising a set of instructions, which when executed by a
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processing or computing device cause, control or program the
device to execute or perform a process, wherein the process
comprises the steps of:

creating one or more media fingerprints each of which

comprises a plurality of hash bits generated from media
data;

extracting features from the media data;

detecting a plurality of scenes within the media data based

at least in part on the one or more media fingerprints and
a distance analysis for the features extracted from the
media data;

assigning a plurality of ranking scores to a plurality of

candidate representative segments in the media data,
each individual candidate representative segment in the
plurality of candidate representative segments com-
prises at least one scene of the plurality of scenes in the
media data, each individual ranking score in the plurality
of ranking scores being assigned to an individual candi-
date representative segment in the plurality of candidate
representative segments;

selecting from the plurality of candidate representative

segments, based on the plurality of ranking scores, a
representative segment.

17. The non-transitory computer readable storage medium
of claim 16, wherein each individual ranking score in the
plurality of ranking scores comprises one or more component
scores, at least one component score in the one or more
component scores relates to at least one of structural proper-
ties, tonality including harmony and melody, timbre, rhythm,
loudness, stereo mix, or a quantity of sound sources of the
media data.

18. The non-transitory computer readable storage medium
of'claim 17, wherein the process further comprises setting one
or more weights for the one or more component ranking
scores using one or more rules.

19. The non-transitory computer readable storage medium
of claim 16, wherein each individual ranking score in the
plurality of ranking scores comprises at least one component
score based on one or more of: duration, a measure for over-
lapping between different candidate representative segments,
time-wise positions of candidate representative segments in
the media data, chroma distance, MFCC, spectral contrast,
spectral centroid, spectral bandwidth, spectral roll-off, spec-
tral flatness, presence of singing voice, absence of singing
voice, one or more rhythm patterns, energy, one or more
stereo parameters, perceptual entropy, co-modulation, or
dynamics.

20. The non-transitory computer readable storage medium
of claim 16, wherein an individual ranking score comprises
one or more component scores, each being assigned a weight
factor in a plurality of weight factors.

21. The non-transitory computer readable storage medium
of claim 16, wherein an individual ranking score is obtained
by using a probabilistic learning framework.

22. The non-transitory computer readable storage medium
of claim 20, wherein the process further comprises setting the
plurality of weight factors using a probabilistic learning
framework.

23. The non-transitory computer readable storage medium
of claim 20, wherein the process further comprises setting the
plurality of weight factors using at least one statistical model.

24. The non-transitory computer readable storage medium
of claim 20, wherein the process further comprises setting the
plurality of weight factors using one or more rules.

25. The non-transitory computer readable storage medium
of claim 20, wherein the process further comprises setting the
plurality of weight factors using a boost algorithm.
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26. The non-transitory computer readable storage medium
of claim 16, wherein the representative segment corresponds
to a candidate representative segment with a ranking score
that is large in relation to other ranking scores assigned to
other candidate representative segments in the plurality of
candidate representative segments.

27. The non-transitory computer readable storage medium
of claim 16, wherein the features extracted from the media
data are used to provide one or more digital representations of
the media data based on one or more of: chroma, chroma
difference, fingerprints, Mel-Frequency Cepstral Coefficient
(MFCC), chroma-based fingerprints, rhythm pattern, energy,
or other variants.

28. The non-transitory computer readable storage medium
of claim 16, wherein the features extracted from the media
data are used to provide one or more digital representations
relates to one or more of: fast Fourier transforms (FFTs),
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digital Fourier transforms (DFTs), short time Fourier trans-
forms (STFTs), Modified Discrete Cosine Transforms
(MDCTs), Modified Discrete Sine Transforms (MDSTs),
Quadrature Mirror Filters (QMFs), Complex QMFs
(CQMFs), discrete wavelet transforms (DWTs), or wavelet
coefficients.

29. The non-transitory computer readable storage medium
of claim 16, wherein the process further comprises deriving
the media data from one or more of: audio files, media data-
base records, network streaming applications, media applets,
media applications, media data bitstreams, media data con-
tainers, over-the-air broadcast media signals, storage media,
cable signals, or satellite signals.

30. The non-transitory computer readable storage medium
of claim 16, wherein the features extracted from the media
data relate to a tuning system of 12 equal temperaments.
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